
Semiconductor Group 09/98, Rel. 01

Microcontrollers
ApNote AP165001

�or æ additional file
AP165001.EXE available

Emulating an asynchronous serial interface (ASC0) via
software routines

Abstract:

The solution presented in this paper and in the attached source files emulates the most
important ASC functions by using SW routines implemented in C. The code is focused on
the SAB C161V/K/O, but will fit to all C16x derivatives.
Beyond the low level software drivers a test shell is delivered. This shell allows a quick
test of the software drivers by an emulator or a starter kit demo board.
All files are available for Keil and Tasking C Cross Compiler.

Author: W. Boelderl-Ermel, HL COM WN SE

Emulating an ASC Interface via SW Routines

Semiconductor Group 2 of 19 AP165001 09.98

1 Introduction... 3
2 General Operation and Hardware Environment... 4

2.1 Supported Features... 4
2.2 Required Resources.. 5
2.3 External Routing .. 6
2.4 Principles of Emulation.. 7

2.4.1 ASC Write.. 7
2.4.2 ASC READ .. 8

3 ASC Emulation Software Description.. 9
3.1 Software Structure... 9
3.2 Main Program.. 10
3.3 Emulation Subroutines .. 12
3.4 Baud Rate Calculation... 14
3.5 Load Measurement.. 15
3.6 Performance Limitations.. 16
3.7 Debugging Support Pins.. 17
3.8 Make File... 18
3.9 Support of KitCON161 Evaluation Board ... 19

AP1650 ApNote - Revision History
Actual Revision : Rel.01 Previous Revision: none
Page of
actual Rel.

Page of
prev. Rel.

(Subjects changes since last release)

Emulating an ASC Interface via SW Routines

Semiconductor Group 3 of 19 AP165001 09.98

1 Introduction

The C16x microcontroller family provides only one on-chip asynchronous serial
communication channel (ASC). If a second ASC is required, an emulation of the missing
interface may help to avoid an external hardware solution with additional electronic
components.

The solution presented in this paper and in the attached source files emulates the most
important ASC functions by using performance and resource balanced SW routines up to
38,4 KBaud in full duplex mode with an overhead less than 40% or up to 100 KBaud in
half duplex mode with an overhead less than 55% at SAB C161O with 16 MHz. All files
are available for Keil and Tasking C Cross Compiler. Due to the implementation in C this
performance is not the limit of the chip. A pure implementation in assembler will result in a
reduction of the CPU load and therefore increase the maximum speed of the interface.

Speaking about performance, it is strongly advised to have a close look at the assembler
code generated by the different compilers. Moreover, at C16x architecture the speed of
executing code strongly depends on the area where code and data are fetched from
(external memory 16 bit data access, external memory 8 bit data access, Internal RAM,
on-chip Flash, ...).

In addition, only a pin compatible solution is provided. The internal register based
programming interface is replaced by a set of subroutine calls.

The attached source files also contain a test shell, which demonstrates how to exchange
information between an on-chip HW-ASC and the emulated SW-ASC via three external
wires in different operation modes. It is based on the SAB C161O (Siemens 16 bit
microcontroller).

A table with load measurements is presented to give an indication for the fraction of CPU
performance required by software for emulating the ASC.

Emulating an ASC Interface via SW Routines

Semiconductor Group 4 of 19 AP165001 09.98

2 General Operation and Hardware Environment

2.1 Supported Features

The following enumeration summarizes all features of the on-chip HW-ASC to be
emulated by software routines:

• full and half duplex communication,
• baud rates up to 38.4 KBaud in full duplex and 100 KBaud in half duplex mode @ SAB

C161O with 16 MHz crystal
• 7 bit asynchronous data frames with variable baud rate, even/odd parity and one or two

stop bits,
• 8 bit asynchronous data frames with variable baud rate and one ore two stop bits,
• 8 bit asynchronous data frames with variable baud rate, even/odd parity and one ore

two stop bits,
• 9 bit asynchronous data frames with variable baud rate and one ore two stop bits,.
• bit stream receive capability.

 The following enumeration lists all functions of a SAB C16x on-chip ASC0, which could
not be cloned due to technical limitations or performance restrictions:

• 8 bit synchronous operation,
• 8 bit data frames plus wake up bit,
• framing check,
• loop back mode,
• bit stream write capability.

Emulating an ASC Interface via SW Routines

Semiconductor Group 5 of 19 AP165001 09.98

 2.2 Required Resources

 To emulate the ASC interface by a set of software routines requires some resources,
which are listed in the following table:

 Table 1
 Resource Requirements
 Resource Emulated ASC
 Number of required I/O pins 2
 Number of interrupt pins 1
 Interrupt Priority very high
 Timer T2 and T4
 Program Memory
 (Emulation routines only)

 820 Words

 Data Memory
 (Emulation routines only)

 20 Words

Emulating an ASC Interface via SW Routines

Semiconductor Group 6 of 19 AP165001 09.98

 2.3 External Routing

 An external wire connecting the SW-ASC data input with the External1 Interrupt pin is
required to activate the SW-ASC via a Start Bit transmitted by the external communication
partner. On test boards with C16X processor the on-chip HW-ASC may also be used as
‘external party’.

 Figure 1
 External Routing of Transmission Lines

EX1

P2.15 (optional)

RXD

TXD

TXD

RXD

C16x
SW
ASC

HW
ASC

Emulating an ASC Interface via SW Routines

Semiconductor Group 7 of 19 AP165001 09.98

 2.4 Principles of Emulation

 The algorithms required for emulating the data transmission depend on the transfer
direction.

 2.4.1 ASC Write

 Figure 2
 Schematic Diagram of Emulating an ASC Write Operation using a Timer ISR

 An ASC Write is prepared by loading the information to be transmitted into a temporary
buffer. After inserting parity, stop and start bits the whole buffer is shifted out within an
interrupt service routine for a timer loaded with 1.0 bit time of the selected baud rate.

Start
Bit

Data BitsParity
Bit

Stop
Bit

Stop
Bit

1 1

SW TXD

Pin

LSBMSB

Emulating an ASC Interface via SW Routines

Semiconductor Group 8 of 19 AP165001 09.98

 2.4.2 ASC READ

 Figure 3
 Schematic Diagram of Emulating an ASC Read Operation using a Timer ISR

 An ASC READ is initiated by an ASC Start Bit arriving at the SW-RXD input pin, which is
externally connected to an External Interrupt pin. The correlated interrupt service routine
starts a timer loaded with 1.5 bit time of the required baud rate. At the beginning of the
related interrupt service routine the timer is reloaded with 1.0 bit time and the logic state of
the SW-RXD pin is sampled in.

 The final ASC Stop Bit provided by the external transmitter is completely ignored to gain
some time for preparing reception of the next byte of a continuous input data stream.

Start
Bit

Stop
Bit

 Data Frame

Timer ISR
sampling data in

Ext. Interrupt

HW ASC

Emulating an ASC Interface via SW Routines

Semiconductor Group 9 of 19 AP165001 09.98

 3 ASC Emulation Software Description

 3.1 Software Structure

 The emulation software is written in C and is split into 3 files:

• usa_emul.c contains all low level software drivers (subroutines and interrupt services)
to emulate the ASC by SW routines. This file may be directly added to the user’s
application software directory and may be included in his make file.

• usa_test.c demonstrates how to start, control and finish the emulation. The complete
file (test shell) may be used to check the low level software drivers in a real application.
Afterwards, the user may copy the required statements for calling the individual ASC
functions into his own application code segments.

• usa_defi.h holds all definitions and declarations related to the emulation software
(usa_test.c, usa_emul.c).

Emulating an ASC Interface via SW Routines

Semiconductor Group 10 of 19 AP165001 09.98

 3.2 Main Program

 The main program (usa_test.c) is implemented as a state machine and handles several
test cases (Figure 4).

 State Machine Diagram for test program ”usa_test.c”

SART_PARITY_
ERROR

usart_sw_receive_
_word_number-- > 0

usart_sw_flag_
_read_ready == OFF

USART_INIT_
EMULATED
_ASC_READ

USART_HW_
_ASC_WRITE_
_OUT

USART_FINISH_
EMULATED
_ASC_READ

USART_INPUT_
PARITY
_CHECK

usart_sw_receive_
_word_number-- > 0

&
error == OFF

error == ON

usart_sw_flag_
_read_ready == ON
 &
usart_sw_rec_word_number
== USART_RECEIVE_
_BUFFER_LENGTH

USART_WHILE_
_SW_ASC_
_WRITES_OUT

USART_FINISH_
EMULATED
_ASC_WRITE

USART_INIT_
EMULATED
_ASC_WRITE

USART_SW_
_ASC_WRITE_
_OUT

usart_
_sw_flag_
write
_ready
== OFF

usart_sw_flag_
_read_ready == ON
 &
usart_sw_rec_word_number
< USART_RECEIVE_
 _BUFFER_LENGTH

USART_WHILE_
_SW_ASC_
_READS_IN

usart_sw_flag_
_write_ready == ON
 &
usart_sw_tran_word_number
< USART_TRANSMIT_
 _BUFFER_LENGTH

ussart_sw_flag_
_write_ready == ON
 &
usart_sw_tran_word_number
== USART_TRANSMIT_
_BUFFER_LENGTH

Figure 4

Emulating an ASC Interface via SW Routines

Semiconductor Group 11 of 19 AP165001 09.98

 The first test case verifies the emulated ASC by a data reception from an external source:

• In the first state ‘USART_INIT_EMULATED_ASC_READ’ the emulated ASC interface
is initialized with the baud rate to be supported (100 KBaud half duplex). As
communication partner serves the on-chip HW-ASC which is set up in same baud rate.

• The second state ‘USART_HW_ASC_WRITE_OUT’ starts the on-chip HW-ASC.
• In the third state ‘USART_WHILE_SW_ASC_READS_IN’ a flag is polled indicating the

end of data reception via the SW-ASC. User application code to be executed during the
SW-ASC read in operation may be included here instead of wasting 8 or 9 bit times
only for running a polling loop. After finishing the transmission of a whole message
containing a programmable number of words the state machine proceeds to the next
state.

• The state ‘USART_INPUT_PARITY_CHECK’ analyzes the message string received by
SW-ASC. If a difference between received and calculated parity bit is detected the
state machine goes to the error state ‘USART_PARITY_ERROR’ and stops.

• The last state ‘USART_FINISH_EMULATED_ASC_READ’ disables all hardware
modules required for data transmission.

 In the second test case the communication is started with an altered transmission
direction. The SW-ASC operates as data source and provides the on-chip HW-ASC with a
message string.

Emulating an ASC Interface via SW Routines

Semiconductor Group 12 of 19 AP165001 09.98

 3.3 Emulation Subroutines

 The file usa_emul.c contains all subroutines and interrupt services required for controlling
the ASC emulation:

• ‘usart_init_sw_asc ()’ initializes all required auxiliary hardware modules like timers,
External Interrupt and the related port pins by programming their control registers.
The variable usart_temp_sw_control_register_word has to be handled in the same way
like the C16x hardware special function register (SFR) S0CON. This register contains
all control bits which configure the ASC. In addition the variable
usart_temp_sw_baudrate sets one bit time of the bitrate which is desired.

• ‘usart_start_sw_write()’ prepares a data transmission via the SW-ASC by

• copying the information to be transmitted into a temporary word,
• inserting a ”0” as Start Bit at LSB position.
• filling up this word buffer with leading ”1’s” (partly used as Stop Bits),
• calculating and inserting a parity bit (if required),

 Afterwards, the WRITE timer is enabled and started.

• ‘usart_parity_bit_calculation()’ calculates the parity bit in respect to odd or even parity
mode and 8 or 9 bit data frame length.

• ‘usart_analyse_input_word()’ compares the transmitted parity bit with the calculated
parity bit of a received information.

• ‘usart_disable_sw_asc()’ disables all required auxiliary hardware modules like timers
and interrupts by setting their control registers respectively.

• ‘usart_int1_interrupt_service()’ is started by a ‘Low’ level at the SW-ASC-RXD pin,
which is externally wired to the interrupt1 pin. The ‘Low’ level is interpreted as an ASC
Start Bit announcing the arrival of further data bits. Therefore a timer is started to
activate a SW-ASC read operation after an 1.5 bit time interval. Finally the interrupt1
service is disabled to avoid undesired reactions to incoming ‘0’ data bits.

• ‘usart_read_timer_interrupt_service()’ starts with a self compensating timer reload. The
Timer Interrupt Flag is set when the timer ‘underflows’. The related interrupt service
routine is entered while the timer continues counting down. The current timer value
(0xFFFx) represents the time already spent in ISR. Adding 1 bit time to current timer
value compensates this interrupt service delay time and enables next sw-rxd-pin
sampling in 1 bit time distance exactly.
 A READ operation begins in the middle of the first received data bit. All incoming bits
are stored in ‘usart_sw_asc_receive_buffer’ arranged in correct bit order (LSB first) and
the Transfer Completion Flag is set. The External Interrupt is enabled again to be
prepared for handling the Start Bit of the next data byte reception. The final stop bit is
completely ignored, which decreases the CPU overhead and saves time to get
prepared for the Start Bit of the next byte of an input message stream.

Emulating an ASC Interface via SW Routines

Semiconductor Group 13 of 19 AP165001 09.98

• ‘usart_write_timer_interrupt_service()’ handles a WRITE operation which is started with
a self compensating timer reload before writing out the LSB of the ‘usart_output_word’.
Every new ISR entry continues with bits of ‘usart_output_word’in ascending order.

Emulating an ASC Interface via SW Routines

Semiconductor Group 14 of 19 AP165001 09.98

 3.4 Baud Rate Calculation

 Data transmission via an ASC interface requires an identical baud rate to be generated by
both communication partners. This can be achieved by selecting a suitable clock oscillator
base frequency and a corresponding prescaler factor.

 The load values for the HW-ASC baud rate generator is stored as a constant in file
‘usa_defi.h’ and calculated by the formula:

 HW_ USART_ xxxx_ BAUD
fosc

= −(
* * _ _

)
2 16

1
Desired Baud Rate

 The timer load and reload values (required for emulating a SW-ASC baud rate generator)
are calculated automatically from this HW-ASC baud rate generator load value by the
subroutine ‘usart_init_sw_asc ()’.

 For read operations the initial load value of 1.5 bit time is corrected by a constant in file
‘usa_defi.h’ (USART_INTERRUPT_DELAY_CORRECTION), which takes into account
• the Interrupt Response Time for External Interrupt1 after receiving a Start Bit,
• the Interrupt Response Time for ‘READ Timer underflow’ including the execution time

for all statements in the corresponding interrupt service routine before sampling in the
first data bit.

 The exact value for ‘USART_INTERRUPT_DELAY_CORRECTION’ may be extracted by
analyzing the assembler program listing or by checking bit pulse signals with an
oscilloscope.

 Attention: The ‘USART_INTERRUPT_DELAY_CORRECTION’ value depends on the
clock generator frequency.

Emulating an ASC Interface via SW Routines

Semiconductor Group 15 of 19 AP165001 09.98

 3.5 Load Measurement

 Emulating a hardware module by a set of software subroutines decreases the processor
performance available for user application software.

 The processor load generated by the emulation software is defined as:

 Load =
Time spent in emulating and interrupt service routines

Total amount of time for transmitting / receiving n bytes
∗100%

 The execution time of the required interrupt service and emulating routines is calculated
by analyzing the compiler object module listing. The ’Total amount of time for transmitting
/ receiving n bytes’ can be easily calculated by multiplying the number of bits to be
transmitted (including Start and Stop Bits) with the bit period time related to selected baud
rate.

 For double checking purpose test statements are included in emulation subroutines
indicating the begin and the end of an interrupt service or emulation routine by switching
port pin P2.15 to ‘Low’ and to ‘High’ state. This port pin may be scanned by an
oscilloscope. However, the pulse width measured at this test pin does not exactly
represent the CPU load caused by a subroutine execution. Even if the macro
‘reset_test_pin_latch()’ is found at the very beginning of a C coded subroutine or the
macro ‘set_test_pin_latch()’ is seen as last statement in C source code, several stack
operations to be executed are found in the compiler’s object module listing before or after
the test pin is affected (PUSH register x, PULL register x).

 The next table presents load calculation results for an ASC emulation via SW routines
running with different baud rates (data frames without parity bit).

 Table 3:
 Load Measurement Values for an ASC emulation via SW routines (without parity bit)
at SAB C161O
 Crystal
Frequency

 Baud Rate Half
Duplex
 Write Load

 Half
Duplex
 Read Load

 Full
Duplex
 Load

 16 MHz 19.2 KB 10.4% 9.2% 19.6%
 16 MHz 38.4 KB 20.7% 18.4% 39.1%
 16 MHz 100.0 KB 54.0 % 48.0% -

 Attention: The load value increases with falling clock generator frequencies.

Emulating an ASC Interface via SW Routines

Semiconductor Group 16 of 19 AP165001 09.98

 3.6 Performance Limitations

 The most severe limitation is seen in half duplex READ mode at 100 KB baud rate. The
Read Timer interrupt service routine requires an execution time near 1 bit time. At the next
higher baud rate (125 KBaud) the self calibrating timer reload mechanism fails after some
ISR entries and loads the timer with a ‘negative’ value (0xFFFx).

 Attention: The Write Timer always requires the highest interrupt priority within the system
to generate a bit stream with a very accurate ASC timing.

 Another fact which reduces the maximum baudrate of the application is the
implementation in C. A solution in assembler would have a positive impact in the
performance. Of course, this solution would be not that easy understood like the solution
in C code. So, it is advised to implement the CPU intensive routines in assembler if
performance sensitive applications are used.

 Speaking about performance, it is strongly advised to have a close look at the assembler
code generated by the different compilers. Moreover, at C16x architecture the speed of
executing code strongly depends on the area where code and data are fetched from
(external memory 16 bit data access, external memory 8 bit data access, Internal RAM,
on-chip Flash, ...).

Emulating an ASC Interface via SW Routines

Semiconductor Group 17 of 19 AP165001 09.98

 3.7 Debugging Support Pins

 To support program debugging some signals are provided to trigger an oscilloscope:

• a falling edge at P2.15 indicates the start of an emulation subroutine or an interrupt
service routine; a rising edge indicates the end.

• data bits to be sampled in by the SW-ASC are provided at P3.8 (SW-ASC-RXD); data
bits to be written out by the SW-ASC are provided at via P3.9 (SW-ASC-TXD).

• a ‘LOW’ state at P2.11 indicates detection of a parity read error.

Emulating an ASC Interface via SW Routines

Semiconductor Group 18 of 19 AP165001 09.98

 3.8 Make File

• The file usa_make.bat contains all statements to start the Keil or Tasking C cross
compiler, linker and locator. (Versions Keil: C166 V3.05a, L166 V3.05, A166 V3.05.
Versions Tasking: C166 V6.0r2, L166 V6.0r2, A166 V6.0r2). The paths to the source
file and compiler / library directories must be modified by the user in respect to the
individual file structure on his personal computer.

The Make-File is started by typing ‘usa_make.bat’ in a DOS window switched to the
directory containing this batch file.

Emulating an ASC Interface via SW Routines

Semiconductor Group 19 of 19 AP165001 09.98

3.9 Support of KitCON161 Evaluation Board

The KitCON-161 Evaluation Board is a starter kit (order at Siemens Semiconductors www)
which helps for a general approach to the SAB C161. Generally speaking it is a printed
circuit board which lets you load software down via the PC to the SAB C161. After that the
SAB C161 executes that code out of the on-board flash memory.

Using the ”test shell” usa_test.c the SW-ASC of the SAB C161 communicates with the on
chip HW-ASC of the SAB C161 device.

The executable program (Keil: sw_asc.h86, Tasking: sw_asc.hex) can be directly
downloaded to the KitCON161 evaluation board configured in address mode 1 (jumper 4 =
open).

The port pins selected for the SW-ASC are neighboured to the related HW-ASC pins and
can be easily connected by setting jumpers on the 152 pin KitCON application area
connector: The next table presents all port pins to be externally wired:

Table 4:
Port pins to be externally wired on KitCON-161 Evaluation Board

HW-ASC-RXD
(P3.11)

HW-ASC-TXD
(P3.10)

SW-ASC-TXD
(P3.9)

X

SW-ASC-RXD
(P3.8)

X

Ext. Interrupt 1
(P2.9)

X

After setting jumper 9 to position (2+3) and pressing the restart button the test program
runs in an endless loop.

